SPS impedance and intensity limitations

E. Shaposhnikova CERN AB/RF
CARE-HHH-2004, November 10, 2004

Work done with: T. Bohl, T. Linnecar, J. Tuckmantel

Outline:

- Known SPS impedance
- Impedance measurements with the beam
 - longitudinal plane
 - transverse plane
- Intensity limitations for LHC beam and possible solutions

Acknowledgments: G. Arduini, P. Baudrenghien, H. Burkhardt, F. Caspers, E. Metral
SPS impedance

Was significantly reduced during shutdown 2000/2001:

- shielding 800 pumping ports (P. Collier, A. Spinks et al.)
- shielding MSE and MKE (B. Goddard, F. Caspers, A. Rizzo, J. Uythoven)
- removal lepton cavities (3 RF systems)
- removal non-used equipment

What do we have now:

- 2 TW RF systems
 - 2x4 sect. + 2x5 sect. cavities @200 MHz - main RF system
 - 2 cavities @800 MHz - Landau system
- 5 MKE and 3 MKP kickers with RF by-pass, 10 ZS
- Resistive-wall impedance of stainless steel chamber
- e-cloud
SPS impedance measurements with the beam

Longitudinal plane

- Bunch spectrum \rightarrow resonant impedances, high R/Q and low Q
- Bunch lengthening \rightarrow $\text{Im}Z/n$ and high frequency Z
- Coherent frequency shift \rightarrow $\text{Im}Z/n$
- Stable phase shift \rightarrow $\text{Re}Z$
- Unstable mode spectrum of LHC beam \rightarrow high R and Q

Transverse plane

- Coherent tune shifts with intensity \rightarrow $\text{Im}Z_T$
- Growth rate as a function of chromaticity \rightarrow $\text{Re}Z_T$
- TMCI threshold \rightarrow Z_V
- Betatron phase beating \rightarrow impedance localisation
Longitudinal impedance with high R/Q and low Q (1/2)

Bunch spectrum measurements with RF off, low frequencies

1999

2001

2003

26 GeV/c. Bunch parameters: $N = 6.0 \times 10^{10}$, $\varepsilon = 0.22$ eVs, $\tau = 25$ ns

- No change in spectra from 1999 to 2000 (MSE and MST septa shielding) → source of 400 MHz was not found

- No change in spectra from 2001 to 2003 (installation of 5 MKE kickers with RF by-pass) → good damping of HOM (including 400 MHz)
Longitudinal impedance with high R/Q and low Q (2/2)

Bunch spectrum measurements with RF off, high frequencies

1996

\[\tau = 25 \text{ ns} \]
\[\varepsilon = 0.24 \text{ eVs} \]
\[N = 1.5 \times 10^{10} \]

2001

\[\tau = 25 \text{ ns} \]
\[\varepsilon = 0.2 \text{ eVs} \]
\[N = 2.6 \times 10^{10} \]

- Signals at 1.5, 1.9 and 2.4 GHz due to pumping ports are no longer there
- The cut-off frequency of pick-up is 2.8 GHz
Longitudinal impedance. Bunch lengthening

Bunch length (fwhm) at 600 ms after injection as a function of intensity

- Difference in slope \sim factor 7
- Measurements in 1999 were done above μw instability threshold
- Bunch parameters: $\varepsilon_{fwhm} = 0.15$ eVs, $V = 900$ kV. Scaling from 2001 measurement: single LHC bunch at 26 GeV should be stable up to ultimate intensity.
Longitudinal impedance, $\text{Im}Z/n (1/2)$

Quadrupole frequency as a function of intensity

- For these bunches:
 - the quadrupole oscillations are not damped for $N > 3 \times 10^{10}$,
 - some slow (~ 2 s) instability was observed on the flat bottom for intensities above 4×10^{10}.

- Increase of $\text{Im}Z/n$ in 2003 can explain, by loss of Landau damping, recent observations for the LHC beam:
 - lowering the coupled bunch instability threshold by $\sim 30\%$.
 - increased synchrotron frequency spread (provided by voltage at 800 MHz) necessary to stabilise the beam.

2001: decrease in slope $\propto \text{Im}Z/n$ by 2.5
2003: increase in slope by $\sim 30\%$ (1.8 Ohm from 5 MKE to $\text{Im}Z/n = 5$ Ohm)
Longitudinal impedance: $\text{Im}Z$ (2/2)

Imaginary part of the SPS impedance up to 1 GHz

total

MKE kicker

MKE kicker: resonant impedance with $R_{sh} = 3 \text{ kOhm}$, $f_r = 0.5 \text{ GHz}$ and $Q = 1$ plus $\text{Im}Z/n = 0.3 \text{ Ohm}$ (fit to measurements of F. Caspers, A. Mostacci, H. Tsutsui, 2000)

• Strong dependence of effective impedance on bunch length τ

• Reasonable agreement of calculations using effective impedances $\text{Im}Z^{m=1}_{eff}(\tau)$ and $\text{Im}Z^{m=2}_{eff}(\tau)$ with quadrupole frequency shift as a function of bunch length and intensity measured at 14 GeV/c
Longitudinal impedance measurements: ReZ (1/2)

Energy loss U as a function of bunch length

$\bar{U} = eV \sin \phi_s / (N \times 10^{-10})$

- Measured from the synchronous phase shift with intensity. For a Gaussian bunch

\[U_n = e^2 N \frac{\omega_0}{\pi} \sum_{p=0}^{\infty} \text{Re} Z_n(p\omega_0) e^{-(p\omega_0\sigma)^2} \]

- Contributions: 200 MHz RF system and MKE kickers, the HOM at 629 MHz, 800 MHz TW. Resistive wall impedance: $\bar{U} = 0.8$ keV for $\sigma = 0.6$ ns.

- For $\tau = 3$ ns and $N = 1.3 \times 10^{11}$ the energy loss from MKE kickers alone is 20 keV $\rightarrow 0.3$ ns gap between buckets and kicker heating with LHC beam.
Longitudinal impedance: ReZ (2/2)

200 MHz TW cavity 5/4 sections

\[f_r = 200 \text{ MHz}, \quad Q = 130 \]

\[R_{sh} = 6 \text{ kOhm}, \quad f_r = 0.6 \text{ GHz}, \quad Q = 0.95 \]

G. Dome, 1977

F. Caspers, A. Mostacci, H. Tsutsui, 2000
Transverse impedance (1/2)

Coherent tune shift measurements

- 2000-2001: Slope ratio: 0.023/0.038 = 0.6 → 40% reduction
- 2002-2003: Slope ratio: 0.026/0.017 = 1.53 → 50% increase
due to 5 MKE (ImZv = 15 MOhm/m to 24 MOhm/m)
- Horizontal plane - small positive shift due to resistive wake
- Growth rates measurements suggest ReZh = 7 MOhm/m and ReZv = 10 MOhm/m with Q=1 and fr = 1.3 GHz (H. Burkhardt, 2004)

H. Burkhardt, G. Rumolo, F. Zimmermann, 2001
Transverse impedance (2/2)

Fast head-tail instability

\[\xi_y \approx 0 \]

\[\xi_y = 0.8 \]

\(N = 1.2 \times 10^{11}, \ \varepsilon = 0.2 \text{ eVs}, \ \tau = 2.5 \text{ ns} \)

- For \(\sigma = 0.5 \text{ ns} \) and \(\varepsilon = 0.2 \text{ eVs} \) the threshold \(N_{th} \approx 4 \times 10^{10} \) (G. Arduini, H. Burkhardt, E. Metral)

- For LHC bunch code MOSES gives \(N_{th} \approx 1.25 \times 10^{11} \) (E. Metral et al., 2004) using broad-band impedance model with \(f_r = 1.6 \text{ MHz}, \ Q=0.8 \) and \(R=11 \text{ MOhm/m} \). Chromaticity and space charge help. (simulations with Head Tail code)
LHC beam in the SPS

RF system upgrade for the LHC beam

- Upgrade of feedback system (one per cavity)
- New RF feedforward system
- New longitudinal damper (0 - 3 MHz)
- New 1 MW couplers
- Transverse damper: bandwidth and gain

Intensity limitations

- e-cloud
- Injection
 - capture loss
- Acceleration
 - coupled bunch instabilities
- Flat top
 - requirements for injection to LHC
Intensity limitations for LHC beam. Transverse plane

- **Resistive wall instability** is cured by Transverse Feedback. Upgraded to 20 MHz bandwidth (W. Hofle)

Electron cloud

(G. Arduini et al., EPAC’04)

- Leads to transverse **emittance blow-up and instabilities**
 - coupled bunch in H-plane (a few MHz)
 - single bunch in V-plane affecting tail of the batch (∼700 MHz)

- **Scrubbing run** increases the threshold from 0.3×10^{11} to 1×10^{11}

- Transverse feedback helps to damp coupled-bunch modes in H-plane with growth rates ∼40 turns

- **High chromaticity** (up to 1.5) is used as a cure for V-plane
Intensity limitations for LHC beam. Injection (1/2)

Capture loss

- Motion to the left \rightarrow negative energy deviation \rightarrow energy loss \rightarrow accelerating bucket \rightarrow reduced bucket length.

- Long bunches from PS: $(4.2 \pm 0.5) \text{ ns}$ injected into 5 ns bucket.

- Increase of capture voltage V (matched voltage: 750 kV, used: 2 MV) helps, $\sin \phi_s = U/(eV)$. Even better for 2 MV increased to 3 MV after 100 ms. Works only for 1 batch (full bucket?) Recapture of lost particles? \rightarrow satellite bunches
Intensity limitations for LHC beam. Injection (2/2)

- Strong dependence on batch intensity, much less on total (number of batches) or bunch intensity
- Reduction of relative loss for 75 ns bunch spacing (5% loss for 16 bunches with $1.2 \times 10^{11}/b$)
- Flux of particles from bucket on the flat bottom, after injection
- In 2004 reduction of losses along the flat bottom with new working point: $(26.19, 26.13) \rightarrow (26.13, 26.19)$ (G. Arduini)
Intensity limitations for LHC beam. Acceleration (1/3)

Beam parameters

Coupled bunch instabilities

- Localised instability during the cycle
- Single batch with 2×10^{10}/bunch is unstable at ~ 280 GeV (16 s)
- The 800 MHz RF system is used in bunch-shortening mode during the whole cycle to increase synchrotron frequency spread
- Preventive emittance blow-up by
 - mismatched voltage at injection (2 MV instead of 700 kV) gives 0.4 eVs
 - beam excitation on the ramp (at 15 s) with band-limited noise around $2f_s$ on 200 MHz voltage amplitude
Intensity limitations for LHC beam. Acceleration (2/3)

Effect of the 800 MHz RF system

Voltage programmes

200 MHz RF system
\(q_p = 0.95, \varepsilon = 0.5 \text{ eVs} \)

Bunch length

\(\varepsilon = 0.45 \text{ eVs} \)

Threshold impedance

\(\varepsilon = 0.45 \text{ eVs} \)

Total voltage: \(V = V_{200} \sin \phi + V_{800} \sin (4\phi + \Delta \phi). \)

The 800 MHz RF system in BS mode, phase \(\Delta \phi = \pi - 4\phi_s \),

amplitude: in 2002 - \(V_{800} \simeq V_{200}/10 \), in 2003: \(V_{800} = 600 \text{ kV} \)
Intensity limitations for LHC beam. Acceleration (3/3)

Mode spectrum of bunch position at the end of the cycle

- Each frame at 0.1 s interval starting at 17 s
- Bunch position → dipole mode
- 72 bunches, (1-36) bunch modes
- Unstable mode $n = 18 \rightarrow \sim 10$ MHz
- The 200 MHz RF system: HOM at 629 MHz
Intensity limitations for LHC beam. Flat top

Beam parameters on the flat top

Bunch length

- 4 batches of 72 bunches with 4σ average bunch length of 1.6 ± 0.2 ns are obtained at 450 GeV for intensity of 1.15×10^{11}/bunch with voltage $V_{200} = 7$ MV and $V_{800} = 0.7$ kV $\rightarrow \varepsilon_{2\sigma} = 0.6$ eVs.

- For stable beam the bunch to bunch phase on the flat top is inside 130 ps.

- The 2σ emittance contains $\sim 85\%$ of particles for a Gaussian bunch limited at separatrix. \rightarrow The 200 MHz capture system in the LHC for ultimate intensities?
Summary (1/2)

Main intensity limitations in the SPS for LHC beam

- Intensity dependent capture loss (∼8%), the exact reason is not clear
- Coupled bunch instabilities are cured, but
 - the 800 MHz in BSM increases the peak line density
 - emittance blow-up leads to extra losses at injection to LHC with 400 MHz bucket
- Beam loading in 200 MHz and 800 MHz (efficiency as a Landau cavity)
- e-cloud and possibly fast transverse instability for more MKE kickers or higher bunch intensities. Cure by chromaticity in conjunction with high voltage increases losses.
Summary (2/2)

Possible improvements:

- **Further SPS impedance reduction** (MKE shielding, improved passive damping of HOM at 629 MHz, search for transverse impedances...)

- **Shorter bunches from PS** with the same or larger emittance (extra RF voltage in the PS)

- **Increased voltage of 800 MHz RF system** (1 more cavity in operation in 2005)

- **Emittance blow-up** increases the threshold of coupled bunch instability on the flat top $\propto \varepsilon^2$ (0.75 eVs for ultimate intensity)

- **The 200 MHz RF system in the LHC** for capture

- Capture loss studies (RF noise, e-cloud, machine resonances...)
In September 2004 during extensive MDs fixed target (CNGS) beam with total intensity of 5.3×10^{13} was accelerated in the SPS from 14 GeV/c to 400 GeV/c with $\sim 10\%$ beam loss.

This is 15% above CERN intensity record of 1997 and almost twice more than presently used for physics.

This is also slightly above ultimate total intensity of LHC beam in the SPS (“only” 4.9×10^{13} but in 1/3 of the ring)

Team:

Booster: M. Chanel
PS: R. Garoby, S. Hancock, E. Metral, R. Steenberg, B. Vandorpe
SPS: G. Arduini, T. Bohl, T. Linnecar, E. Shaposhnikova

plus a lot of help from Operation Group