ideas on KEKB crab-cavity studies

Rama Calaga, Hitomi Ikeda, Jean-Pierre Koutchouk, Akio Morita, Steve Peggs, Yi-Peng Sun, Rogelio Tomas, Joachim Tuckmantel, Frank Zimmermann

possible visits

- December 2008 Rogelio Tomas (CERN)
 - for ATF2 (& KEKB?)
 - approval may depend on LHC progress
- December 2008 Rama Calaga (BNL, LARP)
 - for KEKB
- March or April 2009 Frank Zimmermann (CERN)
- ... + more?

two types of machine studies:

- understanding & solving drop in specific luminosity
- using KEKB as LHC crab-cavity testbed

LHC studies might help for KEKB problem and vice versa

KEKB blow up at high current

- symptoms luminosity, lifetime, beam size?
- single-bunch or multi-bunch effect?
- incoherent or coherent phenomenon?
- transverse or longitudinal effect?
- dependence on working point?
- dependence on tuning conditions?
- one beam (LER) or both beams affected?
- ...

more thoughts & questions & studies

- similar specific luminosity drop for few and many bunches?! (rules out electron cloud as explanation)
- is strong decrease of luminosity related to working point close to half integer (Steve Myers' question at EPAC)?; check further away from the 1/2 integer resonance? and/or do 1D or 2D tune scans with and w/o crab cavity & compare with predicted sensitivity?
- short-range wake field of the crab cavity?
- y blow up uniform along the train? (or correlation with phase difference between the two beams)?
- y beam size & lifetime of single beam vs. current
- crab cavity rf phase noise & phase error vs current; RF high-frequency spectrum vs beam current

more thoughts & questions & studies -2

- add controlled rf noise (sine like or white) until blow up due to beam-beam & measure variation w beam current
- transverse tune shift & bunch length vs current w & w/o (or w detuned) crab cavity; summary of all KEKB impedance measurements with & w/o crab cavity
- change bunch length (α_c)
- vary the Piwinski angle e.g. via changes in beta* or bunch length - to study the effect of the crab cavities for several values of the Piwinski angle (Jean-Pierre Koutchouk)
- introduce large known aberrations D*, IP coupling, β*, etc. and then compare specific luminosity with & w/o crab cavities (to cut down tuning time and operate under well-defined "known" conditions)

more thoughts & questions & studies -3

- crab only one of the two beams; and ½ crab voltage
- for LHC: "turn on" or "ramp" crab cavities with beam
- for LHC: "beam transparency" studies how much crabcavity frequency detuning and which crab-cavity orbit correction are needed, e.g. to avoid transverse instabilities?
- BTFs with & w/o beam-beam and with & w/o crab cavities
- CERN simulations of KEKB?

• ...

Piwinski angles in LHC and KEKB

	LHC nominal	LHC "ultimate"	LHC "FCC" upgrade	LHC "LPA" Upgrade	KEKB	Super-KEKB
σ_{z} [mm]	75.5	75.5	75.5	118.0	7.0	3.0
σ_{x}^{*} [µm]	16.6	15.8	6.3	11.2	103	69.3
$\theta_{\rm c}$ [mrad]	0.285	0.315	0.673	0.381	22.0	30.0
ф	0.64	0.75	4.1 (w/o crab)	2.0	0.75 (w/o crab)	0.65 (w/o crab)