assessment of the wire lens scheme @ LHC from the current pulse power technology point of view - G3

Edward Cook, Frank Zimmermann

discussion participants:

M. Akemoto, E. Cook, U. Dorda, W. Fischer,

K. Torikai, M. Wake, F. Zimmermann

parameters of pulsed beam-beam compensator for LHC

revolution period T_{rev} 88.9 μs +/- 0.0002 μs (pattern repetition frequency) (variation with beam energy)

maximum strength 120 Am

120 A 60 A maximum current

issues: high repetition rate, jitter & turn-to-turn stability tolerance

(1m)

(2m)

374.25 ns

1422.15 ns

573.85 ns & 598.8 ns

2594.75 ns

39

439 kHz

5%

10-4

0.04 ns

(smaller currents will also be needed)

(larger min. times may be needed too)

pulse accuracy with respect to ideal

turn-to-turn amplitude stability (relative to peak)

length of abort gap (could vary)

number of pulses per cycle

turn-to-turn timing stability

average pulse rate

0→max ramp up/down time

length of max. excitation

lengths of min. excitation

pulse pattern should 'mimic' bunch train pattern

questions

- is such pulser feasible? (we hope yes)
- which technology?
- commercially available?
- distance pulser-wire (50 m / 200 m possible?)?
- radiation hardness?
- electromagnetic compatibility EMC?
- termination; resistance (50 Ω , few Ω , m Ω)?
- rough cost estimate (some M\$, 100k\$??)
- circuit architecture? prototype?
- lab tests? RHIC machine studies in 2007/08?
- only B field or E+B (like stripline kicker)?

discussion session G3

participants:

M. Akemoto, E. Cook, U. Dorda, W. Fischer,

K. Torikai, M. Wake, F. Zimmermann

electric circui 100 & WIRE

electric circ 100

summary

- developed circuit diagram of switching device
- 4 MOSFET switches, 2 or 3 power supplies with 10⁻⁴ stability, 2 resistors, 1 or 2 capacitors, arbitrary waveform generator w multiple outputs
 rather low cost
- timing jitter may or may not be a problem
- radiation hardness
- transmission line effect (impedance, reflection, etc.) to be addressed
- plan to build prototype(s) at CERN; beam test at RHIC in 2008
- alternative wide-band rf approach implies much more heating and parallel/serial MOSFETs
- check jitter of RHIC & LHC timing systems