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Abstract

We study the loss of Landau damping for the longitu-
dinal plane via the “Sacherer formalism”. Stability limits
are calculated for several longitudinal beam distributions,
in particular for two types of flat bunches, which could be
of interest to the LHC upgrade. The resulting stability dia-
grams are computed and displayed for different azimuthal
modes. A general recipe is given for calculating the thresh-
old intensity in the case of a capacitive impedance below
transition or, equivalently, for a purely inductive impedance
above transition. The formalism was applied to the case of
the PS Booster, as an example of space-charge impedance
below transition, and to the SPS, as an example of inductive
impedance above transition.

INTRODUCTION

The “large Piwinski angle” (LPA) scenario of the LHC
upgrade [1] requires bunches of 5 × 1011 protons, spaced
by 50 ns, with a flat longitudinal profile. For demonstrat-
ing the feasibility of such upgrade path, we must explore
the stability of flat bunches. This paper extends earlier
Landau-damping considerations [2, 3, 4] to longitudinally
flat beams. More details can be found in Ref. [5].

DISPERSION RELATION

Following Sacherer [2] one can represent the beam par-
ticle distribution as the sum of a stationary component
g0 and a small perturbation g1, g(r, θ, t) = g0(r, θ) +
g1(r, θ, t)e−ıΩt, with r and θ denoting (normalized) polar
coordinates in the longitudinal phase space (where r = 1
refers to a maximum phase excursion ±π, i.e. to a particle
at the edge of the rf bucket). The function g1(r, θ) is [2, 6]

g1(r, θ, t) =
∞∑

m=1

Rm(r)e−ımθe−ıΩt , (1)

where Rm(r) designates a radial function for the mth az-
imuthal mode, and Ω is the complex frequency whose
imaginary part signals growth or Landau damping.

If the change in mode frequency induced by the
impedance is small compared with the synchrotron fre-
quency, the coupling between different azimuthal modes
can be neglected, leading to the Sacherer integral equation
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for mode m:

(Ω − mωs(r))Rm(r) =
dg0

dr

∫ ∞

0

Gm(r, r′)Rm(r′)r′dr′ .

(2)
The variation of the angular synchrotron frequency ω s with
radial amplitude r gives rise to longitudinal Landau damp-
ing. Considering small amplitudes in a single rf system, we
approximate this dependence as [2, 3, 4]

ωs(r) = (ωs0 − Sr2) , (3)

with r adopting values between 0 and 1 at the center and
edge of the bunch, respectively, and ωs0 denoting the an-
gular synchrotron frequency at the center of the bunch in-
cluding the incoherent frequency shift with respect to the
synchrotron frequency of a single particle ω s00. The pa-
rameter S represents the total frequency spread inside the
bunch.

The so-called synthetic kernel approach [7, 4] considers
a simplified interaction where the functions Gm are of the
form Gm(r, r′) ∝ rmr′m−1. This assumption reduces (2)
to the Sacherer dispersion relation [2]

1 =
Δωm

Wm

∫ ∞

0

r2mdg0/dr

Ω − mωsc(r)
dr . (4)

where Wm =
∫ ∞
0

r2m(dg0/dr)dr is a normalization con-
stant and Δωm the “dynamic coherent frequency shift”,
i.e. the frequency shift of the mth mode expected in the
absence of longitudinal frequency spread. For a positive
capacitive impedance below transition, or for an inductive
impedance above transition, we have Re(Δωm) > 0.

FLAT BUNCHES

The Ruggiero-Berg radial phase-space distributions [8]

g(r) =
n + 1
πτ̂2

(
1 − r2

τ̂2

)n

0 < r < τ̂ , (5)

depend on the parameter n. The corresponding spatial line
densities [8, 5] are obtained via an Abel transform [10] as

λ(z) =
n(n + 1)Γ(n)
τ̂
√

πΓ(n + 3
2 )

(
1 − z2

τ̂2

)n+ 1
2

0 < |z| < τ̂ ,

(6)
where we can identify τ̂ as the half bunch length. For
n = 1/2, the density (6) describes an ‘elliptic’ distribu-
tion, for n = 1 a ‘parabolic’ one, and for n = 2 a ‘smooth’
distribution first introduced by Sacherer [2]. It is interest-
ing that also a ‘flat’ distributions can be obtained by letting
the value of n approach the limit −1/2.



An alternative description of a flat distribution was sug-
gested by M. Furman [9], who considered the line density

λ(z) = K(1 − |z/τ̂ |1/p)q |z| < a, p, q ≥ 0 , (7)

with K denoting a normalization constant. With p = 0.039
and q = 10, the distribution (7) yields a reasonable descrip-
tion of a flat bunch [9], which after normalization becomes

λ(z) = 0.5615/τ̂
(
1 − |z/τ̂ |25)10

. (8)

For this distribution the inverse Abel transformation [10],

g(r) = − 1
π

∫ τ

r

dλ(z)
dz

dz√
z2 − r2

, (9)

cannot easily be obtained analytically. However, its numer-
ical computation is straightforward.

Examples of the Furman flat profile (7) and of various
Berg-Ruggiero line densities (6), including the “flat” n =
−1/2 case (more precisely, the distribution for n = −0.49
is displayed), along with the associated radial phase-space
densities, are illustrated in Fig. 1 [5].
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Figure 1: Radial phase space density (left) and longitu-
dinal profile (right) for a flat distribution as limiting case
of Ruggiero-Berg class of distributions (top) as well as for
various other quasi-parabolic distribution functions and for
another “flat” distribution à la M. Furman (bottom) [5].

STABILITY DIAGRAMS

The Sacherer dispersion relation (4) has an explicit an-
alytic solution for the class of distributions given by (5).
Namely, defining z = (ωsc0 −Ω/m)/S, for these distribu-
tions (4) becomes

1 = −Δωm

mS

τ̂2

z
2F1

(
1, 1 + m; 1 + m + n;

τ̂2

z

)
, (10)

where 2F1 denotes the hypergeometric function.
For an arbitrary distribution g0, we can transform (4) into

Δωm

mS
(z, m) =

1
F (z, m)

, (11)

with the function F (z, m) defined as

F (z, m) ≡
∫ ∞
0

um dg0(u)/du
u−z du∫ ∞

0
um(dg0(u)/du)du

, (12)

where we have changed variables from r to u ≡ r2.
The stability border can be visualized in the complex

[Re(Δωm), Im(Δωm)] plane by drawing the complex co-
herent frequency shift Δωm obtained from (10) for z as-
suming real values between 0 and 1. An imaginary part of
the frequency ΔΩ equal zero (or real z) indicates that the
perturbation neither damps nor grows, so that the corre-
sponding tune shift Δωm lies on the border between stable
and unstable motion.

Example stability diagrams for n = 2, 1, 1/2, and −1/2
are presented in Figs. 2. With space charge below transi-
tion or with an inductive impedance above transition the
coherent tune shifts towards the right with increasing beam
intensity. Therefore, in these cases the instability threshold
is related to Δωm/S(z) evaluated at z = 0.

Table 1 summarizes the coherent tune shift stability lim-
its for various different distributions. For of Furman’s flat
distribution, the derivative of g(r) — itself obtained via the
numerical computation of (9) with λ(z) taken from (8) —
is calculated, again numerically, and plugged into the inte-
gral (12). We need to evaluate this integral only at z = 0 to
obtain the threshold value for Δωm/S.

Table 1 and Fig. 2 demonstrate that flat bunches in a sin-
gle RF system are more stable than any of the considered
types of non-flat bunches.

Table 1: Coherent tune shift stability thresholds of the low-
est four modes for various longitudinal distributions nor-
malized to the total synchrotron-frequency spread S [5];
m = 1 refers to the dipole mode, m = 2 to the quadrupo-
lar one, etc.

distribution n Δω1
S

Δω2
S

Δω3
S

Δω4
S

smooth 2 0.33 1 1.8 2.67
parabolic 1 0.5 0.33 2.25 3.2
elliptic 1/2 0.67 1.6 2.57 3.56
flat −1/2 2 2.67 3.6 4.57
flat (Furman) N/A 1.58 2.13 2.90 3.71

INTENSITY THRESHOLDS

The coherent tune shift is proportional to the “effective”
impedance and to the bunch population N b [11], i.e.

Δωm = Cm(τ̂ )
Nbr0ηc3

γωs00
i

(
Z

n

)
eff

, (13)

where η is the slippage factor, γ the relativistic Lorentz fac-
tor, c the speed of light, and r0 the classical particle (here
proton) radius. The function Cm(τ̂ ) depends on the mode
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Figure 2: Stability diagrams computed from the Sacherer
dispersion relation (4) in the complex tune shift plane, nor-
malized to the bunch synchrotron frequency spread S, for
Ruggiero-Berg distributions (5) with n = 2 (‘smooth’,
top), n = 1 (‘parabolic’, second from top), n = 1/2 (‘el-
liptic’, third from top) and n = −1/2 (‘flat’, bottom), con-
sidering dipole (m = 1), quadrupolar (m = 2) and higher
order modes of oscillation [5].

number m, on the bunch distribution and on the bunch
length. For example, for a parabolic bunch one has [11]
Cm(τ̂ ) = 3/(4π3/2)Γ(m + 1/2)/(m− 1)!/τ̂3.

Through the relation (13) the threshold in Δωm/S can
be converted into an intensity threshold.

CONCLUSIONS

Using the Sacherer formalism, we have derived, or re-
derived, the longitudinal instability thresholds for a pure
space-charge impedance below transition, or an inductive
impedance above transition. Different bunch distributions
were considered. Our results suggest that in a single har-
monic rf system longitudinally flat (or uniform) bunches
are more stable than bunches of other, more typical shapes.

Stability diagrams are a useful tool from which approx-
imate values of intensity thresholds can be obtained. The
equivalent LHC bunch-intensity thresholds where longitu-
dinal Landau damping is lost in the PS Booster (Zsc/n ≈
+i 5700 Ω) is about 8 times lower than the corresponding
values for the SPS (Zind/n ≈ −i 10 Ω), and even some
20–30% below the nominal bunch intensity [5]. In both
these accelerators, the lowest thresholds are found for the
dipole modes (m = 1), which are partially controlled by

existing rf feedback loops.
Landau damping, if lost, can be restored by either in-

creasing the frequency spread S, or by decreasing the fre-
quency shift Δωm, e.g. via flattening the bunch. Introduc-
ing a double rf system increases the frequency spread and
could be a cure for loss of Landau damping. However, the
double rf system is thought to create some other kind of
instabilities [12]. Complicating matters, the non-linearities
introduced by a double rf system do not permit any obvious
simplification of the Sacherer equation in the same way as
for a single harmonic system.

In the future we plan to study the implications of the
“synthetic kernel” ansatz, to derive the function Cm(τ̂ ) for
the different types of flat bunches, and to extend the for-
malism presented here to the case of multiple rf systems.
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